Influence prediction of injury and vibration on adjacent components of spine using finite element methods.

نویسندگان

  • Li-Xin Guo
  • Ee-Chon Teo
چکیده

OBJECTIVES A three-dimensional finite element (FE) model of the lumbar spine L3-L5 segment, the ligaments of which were assumed to be nonlinear materials, was established based on the actual vertebra geometry to investigate the influence of the injury lumbar spine on its adjacent components on the condition of whole-body vibration. Several injury conditions of the spine components were assumed, such as facetectomy, nucleotomy, and removal of bony posterior elements. METHODS The dynamic FE analyses were carried out for those FE conditions under cyclic compression loads at the frequencies of 5 and 10 Hz. Then a comparison between the dynamic results and the static results was conducted to analyze the influence of both the nucleus injury and the facet joint injury on the adjacent intervertebral discs. RESULTS AND CONCLUSIONS The results indicate that the lumbar spine exhibits not only vertical vibration but also the flexion--extension motion during vibration. The denucleation will cause high stress and large disc bulge on the disc annulus under vibration. The facet joints of lumbar spine can limit the motion amplitude of flexion-extension and protect both the posterior regions and the posterolateral regions of disc annulus from large strain and stress during vibration. The facet joint removal will increase the stress of disc annulus by around 15% at the posterior region for the conditions of nucleotomy or no vibration. The stress of annulus circumference is higher at the posterolateral region than that of other regions of annulus circumference, and the facet joint removal may exacerbate the intervertebral disc degeneration on the condition of whole-body vibration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and Experimental Study of Vibration and Noise of Pure Electric Bus Transmission based on Finite Element and Boundary Element Methods

Since the electric motor of pure electric vehicle replaced the engine, the "masking effect" disappears, and the problem of vibration and noise of the transmission becomes prominent. This is generated during the gear meshing and is transmitted to the housing through the shaft and bearing. Thereby, radiation noise of the housing are generated. The prediction and analysis...

متن کامل

Free Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method

In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...

متن کامل

Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...

متن کامل

Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...

متن کامل

Thermal Vibration of Composites and Sandwich Laminates Using Refined Higher Order Zigzag Theory

Vibration of laminated composite and sandwich plate under thermal loading is studied in this paper. A refined higher order theory has been used for the purpose. In order to avoid stress oscillations observed in the implementation of a displacement based finite element, the stress field derived from temperature (initial strains) have been made consistent with total strain field. So far no study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of spinal disorders & techniques

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2006